MNLMC6462AM-X REV 1A1

PRECISION CMOS DUAL MICROPOWER OPERATIONAL AMPLIFIER

General Description

The LMC6462 is a dual low offset voltage amplifier, combining rail-to-rail Input and Output Range with very low power consumption. Performance characteristics include low input bias current, high voltage gain, rail-to-rail output swing, and an input common mode voltage range that exceeds both rails, operating at $3 \mathrm{~V}, 5 \mathrm{~V}$, and 15 V . The rail-to-rail output swing of the amplifier, for loads down to 25 KOhms , assures maximum dynamic signal range. These features, plus its low power consumption, make the LMC6462 ideally suited for battery powered applications.

The LMC6462 is an excellent upgrade for circuits using limited common-mode range amplifiers.
For designs that require higher speed, see the LMC6482 dual operational amplifier.

Industry Part Number

LMC 6462

NS Part Numbers

LMC6462AMJ-QML

Prime Die
LMC 6462

Controlling Document

```
5962-9560301QPA
```


Processing

MIL-STD-883, Method 5004

Quality Conformance Inspection

Subgrp	Description	Temp (${ }^{\circ}$ C)	
1	Static tests at	+25	
2	Static tests at	+125	
3	Static tests at	-55	
4	Dynamic tests at	+25	
5	Dynamic tests at	+125	
6	Dynamic tests at	-55	
7	Functional tests at	+25	
$8 A$	Functional tests at	+125	
8B	Functional tests at	-55	
9	Switching tests at	+25	
10	Switching tests at	+125	
11	Switching tests at	-55	

Features

```
- Low offset voltage. 500uV
```

- Ultra low supply current. 23uA/Amplifier
- Operates from 3V to 15 V single supply.
- Low input bias current. 150 fA typ.
- Rail-to-Rail Output Swing within 10 mV of rail, Vs $=5 \mathrm{~V}, 25 \mathrm{k}$ Ohm load.

Applications

- Battery Operated Circuits.
- Transducer Interface Circuits.
- Portable Communication Devices.
- Medical Application.
- Battery Monitoring.

(Absolute Maximum Ratings)
 (Note 1)

Recommended Operating Conditions
 (Note 1)

Supply Voltage

$$
3.0 \leq \mathrm{V}+\leq 15.5 \mathrm{~V}
$$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Electrical Characteristics

DC PARAMETERS: 5 Volt

(The following conditions apply to all the following parameters, unless otherwise specified.) $\mathrm{DC}: \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{Vcm}=\mathrm{Vo}=\mathrm{V}+/ 2, \mathrm{Rl}=>1 \mathrm{M}$

SYMBOL	PARAMETER	CONDITIONS	NOTES	PINNAME	MIN	MAX	UNIT	SUBGROUPS
Vio	Input Offset Voltage					0.5	mV	1
						1.4	mV	2, 3
Iib	Input Bias Current		4			25	pA	1
			4			100	pA	2, 3
Iio	Input Offset Current		4			25	pA	1
			4			100	pA	2, 3
CMRR	Common Mode Rejection Ratio	$\mathrm{OV}<=\mathrm{Vcm}<=5.0 \mathrm{~V}$			70		dB	1
					67		dB	2, 3
Vcm	Input Common-Mode Voltage Range	For CMRR> $=50 \mathrm{~dB}$			5.25	-0.10	V	1
					5.00	0.00	V	2, 3
Vop	Output Swing	$\mathrm{Rl}=100 \mathrm{~K}$ Ohms to $\mathrm{V}+/ 2$			4.990	0.010	V	1
					4.980	0.020	V	2, 3
		$\mathrm{Rl}=25 \mathrm{~K}$ Ohms to $\mathrm{V}+/ 2$			4.975	0.020	V	1
					4.965	0.035	V	2, 3
Icc	Supply Current	$\mathrm{Vo}=\mathrm{V}+/ 2$				55	uA	1
						70	uA	2, 3
Isc	Output Short Circuit Current	Sourcing, Vo = 0V			19		mA	1
					15		mA	2, 3
		Sinking, Vo $=5 \mathrm{~V}$			22		mA	1
					17		mA	2, 3

Electrical Characteristics

DC PARAMETERS: 15 Volt

(The following conditions apply to all the following parameters, unless otherwise specified.) $\mathrm{DC}: \mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{Vcm}=\mathrm{Vo}=\mathrm{V}+/ 2, \mathrm{Rl}>1 \mathrm{M}$

Electrical Characteristics

DC PARAMETERS: 15 Volt (Continued)

(The following conditions apply to all the following parameters, unless otherwise specified.) $\mathrm{DC}: \mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{Vcm}=\mathrm{Vo}=\mathrm{V}+/ 2, \mathrm{Rl}>1 \mathrm{M}$

SYMBOL	PARAMETER	CONDITIONS	NOTES	PINNAME	MIN	MAX	UNIT	SUBGROUPS
Av	Large Signal Voltage Gain	Sourcing, Rl = 100K Ohms	2		110		dB	1
			2		80		dB	2, 3
		Sinking, Rl $=100 \mathrm{~K}$ Ohms	2		100		dB	1
			2		70		dB	2, 3
		Sourcing, Rl $=25 \mathrm{~K}$ Ohms	2		110		dB	1
			2		70		dB	2, 3
		Sinking, Rl $=25 \mathrm{~K}$ Ohms	2		95		dB	1
			2		60		dB	2, 3

DC PARAMETERS: 3 Volt

(The following conditions apply to all the following parameters, unless otherwise specified.)
$\mathrm{DC}: \mathrm{V}+=3 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{Vcm}=\mathrm{Vo}=\mathrm{V}+/ 2, \mathrm{Rl}>1 \mathrm{M}$

Electrical Characteristics

AC PARAMETERS: 15 Volts

(The following conditions apply to all the following parameters, unless otherwise specified.) $\mathrm{AC}: ~ \mathrm{~V}+=15 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{Vcm}=\mathrm{Vo}=\mathrm{V}+/ 2, \mathrm{Rl}>1 \mathrm{M}$

Note 1: Do not short circuit output to $\mathrm{V}+$, when $\mathrm{V}+\mathrm{is}$ greater than 13 V or reliability will be adversely affected.
Note 2: Vcm=7.5V and Rl connected to 7.5V. For Sourcing tests, 7.5V<=Vo<=11.5V. For Sinking tests, $3.5 \mathrm{~V}<=\mathrm{Vo}<=7.5 \mathrm{~V}$.
Note 3: Device configured as a voltage follower, with a 10 V input step. For Positive Slew Vin swing is 2.5 V to 12.5 V , Vout is measured between 6.0 V and 9.0 V . For Negative Slew Vin is 12.5 V to 2.5 V , Vout is measured between 9.0 V and 6.0 V .
Note 4: Limits are dictated by testing limitations and not device performance.

Graphics and Diagrams

GRAPHICS\#		DESCRIPTION
06086 HRC 4	CERDIP (J), 8 LEAD (B/I CKT)	
J08ARL	CERDIP (J), 8 LEAD (P/P DWG)	
P000114A	CERDIP (J), 8 LEAD (PIN OUT)	

See attached graphics following this page.

LMC6462AMJ

8 - LEAD DIP

CONNECTION DIAGRAM

TOP VIEW
P000114A

MIL/AEROSPACE OPERATIONS
2900 SEMICONDUCTOR DRIVE SANTA CLARA, CA 95050

Revision History

Rev	ECN \#	Rel Date	Originator	Changes
1A1	M0002754	$05 / 19 / 98$	Rose Malone	Update MDS: MNLMC6462AM-X Rev. OA0 to MNLMC6462AM-X Rev. 1AA1. Updated subgroups in Electrical section to meet SMD. Update B/I graphic.

